

43rd European Rotorcraft Forum

GENERAL INFORMATION AND PROGRAMME

Milan - ITALYPolitecnico di Milano - Bovisa
12th-15th September 2017

Welcome from the Organizing Committee

Dear colleagues,

On behalf of the International Committee of the European Rotorcraft Forum, it is a great pleasure for me to invite you to the 43rd ERF, which will take place in Milan.

This edition is particularly significant as it is held in conjunction with the 28th Symposium of the European Chapter of the Society of Flight Test Engineers. Its key theme this year is 'Shaping the future of flight testing".

A high level of product, service and manufacturing innovation requires an equally high level of experimental and testing capabilities. You are therefore also invited to take the opportunity to attend the Symposium.

ERF has always been an extraordinary chance for all of us to exchange experiences and views on the best way forward to face the challenges of the future and deliver greater and

greater advantages to the users through the evolution and application of rotorcraft technology. This year we are doing this in a city that today is central to Italian and European economy and innovation while in the past has seen the shining expression of Leonardo's genius.

Reminding ourselves of the life and achievements of the inventor of the Aerial Screw will help us nurture the spark of innovation in the spirit of true farsighted vision of our future, inspiring us to make possible what seems not.

I therefore hope you will join us for this important Event and I look forward to meeting you in Milan in September.

Fabio NANNONI Chair of the Organizing Committee

ERF International Committee

	Mrs. B. Demaret ONERA Chemin de la Huniere F-91761 Palaiseau Cedex, France blanche.demaret@onera.fr	Mr. R. Mirgazov TsAGI 1 Zhukovsky Street, Zhukovsky Moscow Region, 140180 Russia ruslan.mirgazov@tsagi.ru
	Mr. J. F. Hakkaart* National Aerospace Laboratory NLR P.O. Box 90502 NL-1006 BM Amsterdam, The Nederlands joost.hakkaart@nlr.nl	Mr. F. Nannoni* Leonardo Helicopters Via G. Agusta, Cascina Costa 21017 Samarate – Varese, Italy fabio.nannoni@leonardocompany.com
/	Mr. A. Irwin Leonardo Helicopters Lysander Road, Yeovil BA20 2YB, UK alan.irwin@leonardocompany.com	Prof. J. Narkiewicz* Warsaw University of Technology Power and Aeronautical Engineering Warsaw, Poland jnark@meil.pw.edu.pl
	Dr. P. Krämer Airbus Helicopters Gmbh Industriestraße 4-6 D-86607 Donauwörth, Germany philipp.kraemer@airbus.com	Mr. A. Okhonko* JSC Russian Helicopters Entrance 9, 12 Krasnopresnenskaya emb. Moscow, Russia a.okhonko@rus-helicopters.com
	Mr. T. Krysinski * Airbus Helicopters F-13725 Marignane Cedex, France tomasz.krysinski@airbus.com	Prof. P. Masarati Politecnico di Milano Dept. of Aerospace Science and Technology I-20156 Milano, Italy pierangelo.masarati@polimi.it
	Dr. R. Markiewicz* DSTL Portsdown West, Fareham Hampshire, P017 6AD, UK rhmarkiewicz@dstl.gov.uk	Dr. K. Pahlke* DLR Program Directorate Aeronautics Lilienthal Platz 7 D – 38108 Braunschweig, Germany klausdieter.pahlke@dlr.de

General Information

Venue

MILAN

With a population of about 1.3 million, Milan is the capital of Lombardy and is located in the Po Valley, close to the Alps and with Lake Como, Lake Maggiore and Lake Lugano to the North.

Milan is the Italian economic and finance center, with the headquarters of the Stock Exchange and of many of the most important Italian industrial and financial institutions.

It is also the capital city of Italian fashion and design, hosting many of the main Italian fashion houses and international design fairs, including Milan Fashion Week and 'Salone del Mobile" (Milan Furniture Fair). Several world famous cultural institutions are located in Milan an none more famous than Teatro alla Scala, the temple of lyric opera, as well as prose theatres such as the 'Piccolo Teatro" founded by Giorgio Strehler. The city offers to visitors the possibility

to admire a wide range of monuments, museums and buildings reflecting two thousands years of history and culture, from Roman vestiges to contemporary architectural masterpieces.

POLITECNICO DI MILANO - BOVISA CAMPUS

Founded in 1863, Politecnico di Milano is the largest school of Architecture, Design and Engineering in Italy, with 3 main campuses located in Milan, and 5 campuses based around the Lombardy region, one of the most industrialized areas of Europe.

Politecnico di Milano is one of the leading universities in the world, ranked 24th on a global scale, 7th in Europe, and 1st in Italy among technical universities, according to QS World University Ranking - Engineering & Technology 2017.

Thanks to a strong internationalization policy, several study programs are taught entirely in English, attracting an ever-increasing number of talented international students from more than 100 countries. In 2015/2016 21% of the students enrolled in Master of Science Programs were international.

Strategic research is carried out mainly in the fields of energy, transport, planning, management, design, mathematics and natural and applied sciences, ICT, built environment, cultural heritage, with more than 250 laboratories.

The scientific community of Politectico di Milano is made of more than 1,300 professors and research fellows, with 38,200 students (2013 update).

The Dipartimento di Scienze e Tecnologie Aerospaziali (Department of Aerospace Science and Technology, DAER- PoliMi) was established within Politecnico di Milano as an autonomous institute in the 1950s. The personnel of DAER- PoliMi is currently comprised of 43

faculty, 27 technical and administration staff, 70 research assistants and Ph.D. students. The main activity within the Department is scientific research.

Directions to Bovisa Campus

As you are likely to land in Malpensa, Linate or Orio al Serio airport, you can plan how to reach Milan following these suggestions.

Unfortunately there will be no Meet and Greet, but we're sure that if you keep these

instructions ready at hand it won't be hard to reach us.

If you land at Linate Airport:

Air Bus to Centrale Railway Station: www.atm-mi.it Bus no. 73 to Piazza San Babila: www.atm-mi.it

If you land at Malpensa Airport:

Malpensa Express Train to Cadorna Railway Station: www.malpensaexpress.it Malpensa Shuttle to Centrale Railway Station: www.malpensashuttle.it

If you land at Orio al Serio Airport:

Terravision Bus to Centrale Railway Station: www.terravision.eu/milan_bergamo.html Orio shuttle to Centrale Railway Station: www.orioshuttle.com

Bovisa Campus

From the city center, get to one of the following subway stations: Porta Venezia (Red line), Repubblica (Yellow line) or Garibaldi (Green line), take the suburban railway called 'Passante ferroviario" and get off at Bovisa station.

Alternatively after reaching the Cadorna subway stop (Green or Red lines), from the subway station go to railway station above, board any train leaving from the station (except Malpensa Express) and get off at Bovisa station.

Exit Bovisa railway station, turn right to reach the Engineering Campus (Via La Masa 34).

Forum Registration

To apply for registration please go to www.ERF2017.org/registration/

Registration Fees

ERF (including SFTE-EC Symposium) Registration Fees	Early Registration Before July 7, 2017	Late Registration After July 7, 2017
Non Member	840 €	890 €
Member (CEAS)	800 €	850 €
Speaker/Chairman	740 €	790 €
PhD Student	600 €	650 €
BSc/MSc Student	300 €	300 €
Social Program for Accompanying Person	115€	115€

ERF (including SFTE-EC Symposium) registration fee for non-members/members/speakers/chairmen/PhD students includes:

ERF attendance, ERF documentation, SFTE EC attendance, SFTE EC documentation, coffee breaks, lunches, 1 welcome cocktail ticket, 1 gala dinner ticket. CEAS Member:

 $Council \ of \ European \ Aerospace \ Societies \ (includes: 3AF, AAAR, AIAE, AIDAA, DGLR, FTF, HAES, NVvL, PSAA, RAeS, SWFV, TsAGI, CzAeS).$

ERF (including SFTE-EC Symposium) registration fee for BSc/MSc students includes:

ERF attendance, ERF documentation, SFTE EC attendance, SFTE EC documentation, coffee breaks, lunches.

Please send a copy of your Student ID-Card (ERF2017@leonardocompany.com).

SFTE-EC Symposium (including partial ERF) Registration Fees	Early Registration Before July 7, 2017	Late Registration After July 7, 2017
Non Member	530€	560€
Member (CEAS)	475 €	505 €
Speaker/Chairman	440€	470 €
PhD Student	360 €	390 €
BSc/MSc Student	180 €	180 €
Social Program for Accompanying Person	70 €	70 €

SFTE-EC Symposium (including partial ERF) registration fee for non-members/members/speakers/chairmen/PhD students includes:

SFTE EC attendance, SFTE EC documentation, partial ERF attendance (from September 13), ERF documentation, coffee breaks, lunches, 1 gala dinner tick SFTE Member:

Society of Flight Test Engineers

please send a copy of your Student ID-Card (ERF2017@leonardocompany.com)

SFTE-EC Symposium (including partial ERF) registration fee for BSc/MSc students includes:

SFTE EC attendance, SFTE EC documentation, partial ERF attendance (from September 13), ERF documentation, coffee breaks, lunches.

Please send a copy of your Student ID-Card (ERF2017@leonardocompany.com).

Insurance

Participants are advised to take out their own travel insurance and to extend any private polices for personal possessions they may bring with them. The Forum does not cover participants against cancellations of bookings or loss/theft of belongings.

Language

Conference language is English. Presentations and discussions are therefore in English. There will be no simultaneous translation during the session.

Security - Passport and visa

In Italy everyone must have a valid identity card or passport. It is the responsibility of each delegate to obtain all the necessary documents, including visa if necessary.

Hotel Accomodation

Please use the link below to find hotel rooms for the best price.

www.ERF2017.org/accommodation/

We recommend to make your reservations as soon as possible.

Social Programme

Welcome cocktail

BLUE NOTE MILANO

Blue Note Milano is a jazz club and restaurant located at Via Borsieri 37 in the Isola district of Milan, Italy. Opened on March 19, 2003, Blue Note Milano is part of the Blue Note network alongside the historical Blue Note Jazz Club in Greenwich Village New York City and the Blue Note Clubs in Tokyo and Nagoya, Japan.

Gala Dinner

MUSEO DELLA SCIENZA E DELLA TECNOLOGIA LEONARDO DA VINCI

The National Museum of Science and Technology 'Leonardo da Vinci" is the pre-eminent museum of its kind in Italy and houses the largest collection of mechanical models realized on the basis of Leonardo da Vinci's drawings.

Next to research and conservation, education is one of the main functions of the Museum and one

of the fundamental purposes of the National Museum of Science and Technology Leonardo da Vinci Foundation.

Interactive laboratories and exhibitions promote discovery and exploration, helping visitors use their own knowledge and skills to interpret objects and phenomena and to independently shape their own learning process.

The Museum offers a path of discovery, experience, emotions and understanding accessible for all.

City of Milan: Vertical Flight Heritage Site Awards

We are very pleased to announce that during the Gala Dinner, the City of Milano will receive an important recognition from AHS International: The Vertical Flight Heritage Site Awards.

The Vertical Flight Heritage Sites program is intended to recognize and help preserve locations associated with the most noteworthy and significant contributions made in both theory and practice of vertical flight aircraft technology.

In 2016 the committee selected Milan as a site to be recognized for its historic significance. Leonardo da Vinci's Studio in Milan was the site of the first known VTOL design (c. 1487).

Although the exact location is not known, Leonardo di Ser Piero da Vinci – while working for Ludovico Maria Sforza, Duke of Milan – designed the Helix Aerial Screw, a flying machine intended to be capable of vertical take-off and landing using a hand-cranked rotating wing. The Helix is generally considered to be the first known engineering design for a manned helicopter.

Technical Visit

Vergiate Site: Leonardo Helicopters Final Assembly Line and Flight Line

Vergiate, located in Lombardy close to Lake Maggiore, is a fundamental site for the Italian aviation history since 1937, when SIAI (Società Idrovolanti Alta Italia) started the production of fixed-wing aircraft. In 1969 Agusta acquired control of SIAI and of the Vergiate facilities, transferring part of its helicopter assembly activities. From 1997, when Agusta re-organised its business, and fixed-wing

activities were transferred to Aermacchi, the Vergiate plant has been exclusively dedicated to helicopter assembly.

Today Vergiate plays a critical role in AgustaWestland's manufacturing operations, being home to final assembly lines for our main helicopter models.

Aircrafts exit the assembly line for the near flight line, where they undergo preparations for delivers, occurring each week, and the customer acceptance."

Programme at a Glance (Preliminary)-For further detail check on www.ERF2017.org

	DAY 1 - TUESDAY 12th SEPTEMBER								
09:00	6	Opening Cerimony							
11:30)	PLENARY SESSION - HEMS							
12:30)	Networking Lunch							
13:30) A	Aerodynamics Flight Mechanics Simulation and Training Aircarft Design Dy							
16:00	Α.	Aerodynamics Flight Mechanics Simulation and Training Aircarft Design Dynamics							
20:00		Welcome Reception - Blue Note							

	DAY 2 - WEDNESDAY 13th SEPTEMBER							
09:00	Aerodynamics	Flight Mechanics	Operational Aspects	Aircraft Systems	Test and Evaluation			
11:00	AHS Best Paper - Plenary							
11:30	KEYNOTE ADDRESS - POLIMI Industria 4.0 - Prof. Taisch							
12:30			Networking Lunch					
13:30	Aerodynamics	Flight Mechanics	Dynamics	Aircraft Systems	Test and Evaluation			
16:00	Aerodynamics	Flight Mechanics	Acoustics	Engine and Propulsion	History of Rotorcraft			
20:00	Gala Dinner- Museo della Scienza e della Tecnologia L. Da Vinci							

	DAY 3 - IHURSDAY 14th SEPIEMBER							
09:00	Airworthiness	Flight Mechanics	Dynamics	Structures and Materials	Crew Station and Human Factors			
11:00	KEYNOTE ADDRESS - EASA							
11:30	KEYNOTE ADDRESS - UAV							
12:30	Networking Lunch							
13:30	Aerodynamics	Avionic and Sensors	Acoustics	Structures and Materials	Test and Evaluation + Manufacturing			
18:00	END of CONFERENCE							

	DAY 4 - FRIDAY 15th SEPTEMBER						
09:00		TECHNICAL VISIT					
12:00	12:00	at VERGIATE Final Assembly Line and Flight Line					
	•						

Programme (Preliminary)-For further detail check on www.ERF2017.org

			Don't Tourist 12th Control					
			Day 1 - Tuesday 12th September OPENING CEREMONY		1 1			
9.00		F. NANNONI						
11.00			Coffee Break					
	PLENARY SESSION /							
11.30			HEMS		/			
12.30			Networking Lunch					
	AERODYNAMICS 608	FLIGHT MECHANICS 524	SIMULATION & TRAINING	AIRCRAFT DESIGN 574	DYNAMICS 632			
	608	524	533	5/4	632			
13.30	Optimal Placement of an airflow probe at a multirotor UAV for airborne	System identifications of three-axis gyro model and base model of a RC	Pilot Modelling for Boundary Hazard	The overview of new carbon propeller development for 32kg Gross Weight	Using Multibody Dynamics for the Stability Assessment of a new Rotor			
	wind measurements	helicopter without stabilizer bar	Perception and Reaction Study	Agricultural Multicopter(Octocopter)	/ Test Rig			
	Molter Christian	Wu Mei-Li-Wen	Lu Linghai	Kim Deog-Kwan	Arnold Juergen			
	AERODYNAMICS 602	FLIGHT MECHANICS	SIMULATION & TRAINING 683	AIRCRAFT DESIGN	DYNAMICS 729			
	602	582	683	606	729			
				/ / .				
14.00	CFD analysis during the design of	Dynamic inflow and ground effect in	Wind characterization around offshore platform for real-time	An Enhanced Prediction Methodology for Rapid Performance and Control	IMPROVEMENT OF WHIRL FLUTTER STABILITY OF TILTROTOR USING			
	Fuel Equipment	multirotor UAV attitude dynamics	helicopter simulator	Design of Highly Maneuverable UAVs	GURNEY FLAPS			
					/			
	Ripolles Frederic	Riccardi Fabio	Scala Stefano	Smith Marilyn	Quaranta Giuseppe			
	AERODYNAMICS 715	FLIGHT MECHANICS 731	SIMULATION & TRAINING	AIRCRAFT DESIGN	DYNAMICS 707			
	/13	/31	THE DEVELOPMENT AND USE OF A	321	/0/			
			PILOTED FLIGHT SIMULATION	Performance Improvement of	Neelineer stability analysis of ushid			
14.30	Measurements on a Yawed Model Rotor Blade Pitching in Reverse Flow	Reliability Assessment of Small-scale Rotorcraft models	ENVIRONMENT FOR ROTARY-WING OPERATION TO THE QUEEN	Performance Improvement of Variable Speed Rotors by Gurney	Nonlinear stability analysis of whirl flutter for a filtrotor wing-nacelle			
	ROLDI BIAGE PILCIIIII III REVEISE FIOW	Rotorcialtiflodels	ELIZABETH CLASS AIRCRAFT	Flaps	system			
			CARRIERS		\times			
	Smith Luke	Avanzini Giulio	Kelly Michael	Han Dong	Rezgui Djamel			
	AERODYNAMICS 699	FLIGHT MECHANICS 702	SIMULATION & TRAINING 520	AIRCRAFT DESIGN	DYNAMICS 609			
	033	702	320	302	303			
		Finite-State Wake Inflow Models for	Real TimeWake Computations using	/	Aeromechanics of Self-Twisting			
15.00	Flowfield Measurements of Reverse Flow on a High Advance Ratio Rotor	Rotorcraft Flight Dynamics in Ground	Lattice Boltzmann Method on Many	A multidisciplinary process for integrated rotorcraft design	Blades in High-Speed Slowed Rotor			
	Flow of a High Advance Rado Rotor	Effect	Integrated Core Processors	integrated rotorciars design	Flight			
	Lind Andrew	Cardito Felice	Barakos George	Weiand Peter	Ward Elizabeth			
15.30			Coffee Break					
	AERODYNAMICS 625	FLIGHT MECHANICS	SIMULATION & TRAINING 616	AIRCRAFT DESIGN	DYNAMICS 678			
	023	003		333	676			
		Validation of a Dynamic Inflow Model	Real-time Piloted Simulation using		Vibratory Load Predictions of a High-			
16.00	A novel hybrid method for helicopter cost effective aeroelastic simulations	Based on a Flight Dynamics Model and a Lattice-Boltzmann Fluid Solver	Rotorcraft Comprehensive Analysis	Clean Sky 2: Exploring new rotorcraft high speed configurations	Advance Ratio Coaxial Rotor System			
	cost effective defoeldstic simulations	Using Flight Test Data	with a Virtual Reality Interface	riigii speed corriginations	Validated by Wind Tunnel Tests			
	Riziotis Vasilis AERODYNAMICS	Bludau Jakob FLIGHT MECHANICS	Sridharan Ananth SIMULATION & TRAINING	Cabrit Philippe AIRCRAFT DESIGN	Feil Roland DYNAMICS			
	AERODYNAMICS 577	FLIGHT MECHANICS 693	712	AIRCRAFT DESIGN 597	DYNAMICS 687			
					•••			
	Numerical simulation of the laminar-		Effects of Motion-Cueing on the					
16.30	to-turbulent transition for helicopter rotor flows with Î*-ReÎ , t transition	The role of black-box models in rotorcraft attitude control	Quasi-Transfer of Training for	Static aeroelastic response of rotor blade to internal preloading	A VIRTUAL ENVIRONMENT FOR ROTORCRAFT VIBRATION ANALYSIS			
	model		Inexperienced Helicopter Pilots					
	Dish or Francis	Control Minute	F-bb1B14-	Dibble Debera	T			
	Richez Francois AERODYNAMICS	Cortigiani Nicola FLIGHT MECHANICS	Fabbroni Davide SIMULATION & TRAINING	Dibble Robert AIRCRAFT DESIGN	Tamer Aykut DYNAMICS			
	516	732	679	614	667			
17.00	TOWARDS HIGH-ORDER METHODS	Developing an Observation	A numerical model-based approach	Integration of Physics Based Weight	INDIVIDUAL BLADE CONTROL WITH THE SMART SPRING â€' A CLOSED-			
	FOR ROTORCRAFT APPLICATIONS	Methodology for Non-Measurable Rotorcraft States	for helicopter harsh landing identification	Models into Rotorcraft Design Sizing	LOOP INDEPENDENT HARMONIC			
		ROTOICIAIT STATES	identification		CONTROL APPROACH			
	Barakos George	Trainelli Lorenzo	Sbarufatti Claudio	Govindarajan Pharath	Nitzsche Fred			
	AERODYNAMICS	FLIGHT MECHANICS	SIMULATION & TRAINING	Govindarajan Bharath AIRCRAFT DESIGN	DYNAMICS DYNAMICS			
	579	535	646	672	666			
			Using Piloted Simulation to Measure	On the Analyses of Rotorcraft	Physics Based Approaches for Active			
17.30	AEROEI ASTIC SIMI II ATION OF THE	Rotorcraft model identification: a	Using Prioted Simulation to Measure					
17.30	AEROELASTIC SIMULATION OF THE TAIL SHAKE PHENOMENON	black-box time/frequency domain	Pilot Workload of Landing a	Dynamics and Rapid Aerodynamic Loads Estimation for Flight Control	Rotor Modeling and Control			
17.30		Rotorcraft model identification: a black-box time/frequency domain approach	Pilot Workload of Landing a Helicopter on a Small Ship	Dynamics and Rapid Aerodynamic Loads Estimation for Flight Control Actuation	Rotor Modeling and Control			
17.30	TAIL SHAKE PHENOMENON	black-box time/frequency domain approach	Pilot Workload of Landing a Helicopter on a Small Ship	Loads Estimation for Flight Control Actuation	Rotor Modeling and Control			
17.30		black-box time/frequency domain approach Bergamasco Marco	Pilot Workload of Landing a	Loads Estimation for Flight Control Actuation Hashim Farahani	Rotor Modeling and Control Sankar Lakshmi			

## ASSOCHMANIS FUERT MECHANICS GPERATIONAL ASSECTS GPERATION						
S78 G31 G27 S56 G32 A Reed to Resemble Place Pla		AEDODVNAMICS	ELIGHT MECHANICS	ay 2 - Wednesday 13th September	AIDCDAET SYSTEMS	TEST & EVALUATION
Secretary Description De	1 1					
### PERFORMANCS FLIGHT MECHANICS GBB	9.00	Investigation of Dynamic Stall on a	Use of Harmonic Decomposition Models in Rotorcraft Flight Control Design for Alleviation of Vibratory		Health monitoring on hydraulic	A Need to Rewrite the Takeoff and Landing Acceptable Compliance Methods (AMC/AC 278.29) for Multiengine Rotorcrafts
### PERFORMANCS FLIGHT MECHANICS GBB		Letzgus Johannes	Saetti Umberto	Avi Arrigo	Paulmann Gregor	Paggi Bernardino
Performance Prediction of High Efficiency Novel Coasial Rotor Configuration with Asymmetric Rotors Rearnangian Rehal REGOVINATION REARRANGE FURTH MICHANICS REARRANGE STATES REARRANGE STATES REARRANGE STATES REARRANGE STATES REARRANGE STATES REARRANGE STATES RECOVER THE RECOVER AND STATES RECOVE	\vdash	AERODYNAMICS				TEST & EVALUATION
Performance Prience Configuration with Asymmetric Configuration with Asymmetric Rectors AW169 Tail Rotor Loss Simulation Rectors	l i	711	688	525	691	/ 610
10.00 Large Etdy Simulation of Advancing Rotor for Near for Far Wake Assessment Caprace Denis-Gabriel Singh Ajay Singh Ajay Barakos George Coffee Break FLIGHT MECHANICS Plenary Session - AHS Best Paper POLIMI Industria 4.0 - Prof. Marco Taisch Networking Lunch ABRODYNAMICS FLIGHT MECHANICS Sheng Chunhua ABRODYNAMICS Sheng Chunhua ABRODYNAMICS Sheng Chunhua Muscarello Vincenzo Parada JVR Sheng Chunhua ABRODYNAMICS Sheng Chunhua Muscarello Vincenzo Prasad JVR Sheng Chunhua ABRODYNAMICS Sheng Chunhua Muscarello Vincenzo Prasad JVR Sollazzo Adolfo Titt-ROTGREAFT Titt-ROTG	9.30	Efficiency Novel Coaxial Rotor Configuration with Asymmetric Rotors		helipad takeoff and landing Performance for the BK117 C-2: a comprehensive approach based on limited testing and simulation	Hydraulic System via stepped pressure modulation, a dual stage valve optimization via jet flows	Degraded Visual Environment Mitigation (DVE-M) Program NATO Flight Trials: U.S. Army Flight Test and Results
10.00 Large Eddy Simulation of Advancing Rotor for Wake Assessment Caprace Denis-Gabriel Singh Ajay Rotorcart in High Speed Elight Using an Active Cargo Hook 11.00 Pignary Session - AHS Best Paper 11.30 PollAll Industria 4.0 - Prof. Marco Taisch 11.30 Performance of a Hooke Stall Shape Chunhua AERDOTYLAMICS Shape Chunhua ARRODYNAMICS SPECIAL SHAPE Control of a Main Gottor in Various States of Helicopter Fibe Chunhua ARRODYNAMICS SPECIAL SHAPE CONTROL OF A Marco Taisch Helicopter Wise And TITLAROTYCH CHUNHUR CHUN		Ramanujam Rahul	Bianco Mengotti Riccardo	Garavello Andrea	Bacchiega Giacomo	Fujizawa Brian
10.00 Large Eddy Simulation of Advancing Rotor for Near to Far Wake Rotorcraft in High Speed Flight Using an Active Cargo Hook Resessment 10.30 Carpace Denis-Gabriel Singh Ajay Barko George Singh Ajay Barko George Brunetti Massimo. Ciotola Ant Coffee Break 11.00 Plenary Session - AHS Best Paper 11.30 Predicting Aerodynamic Performance of a Hovering Rotor Near Stall Models William Rotor Near Stall Models Sheng Chunhua Muscarello Vincenzo Pasad JVR Solazzo Adolfo Timmerman AERODYNAMICS FLIGHT MECHANICS DYNAMICS Sand Sheng Chunhua Muscarello Vincenzo Pasad JVR Solazzo Adolfo Timmerman AERODYNAMICS FLIGHT MECHANICS DYNAMICS AIRCRAFT SYSTEMS TEST & EVALL Sheng Chunhua Muscarello Vincenzo Pasad JVR Solazzo Adolfo Timmerman AERODYNAMICS FLIGHT MECHANICS DYNAMICS AIRCRAFT SYSTEMS TEST & EVALL Sheng Chunhua Muscarello Vincenzo Pasad JVR Solazzo Adolfo Timmerman AERODYNAMICS FLIGHT MECHANICS DYNAMICS AIRCRAFT SYSTEMS TEST & EVALL Sheng Chunhua Muscarello Vincenzo Pasad JVR Solazzo Adolfo Timmerman AERODYNAMICS FLIGHT MECHANICS DYNAMICS AIRCRAFT SYSTEMS TEST & EVALL Sheng Chunhua Muscarello Vincenzo Pasad JVR Solazzo Adolfo Timmerman AERODYNAMICS FLIGHT MECHANICS DYNAMICS AIRCRAFT SYSTEMS TEST & EVALL Sheng Chunhua Muscarello Vincenzo Pasad JVR Solazzo Adolfo Timmerman AERODYNAMICS FLIGHT MECHANICS DYNAMICS FLORT MECHANICS OF TORMER SHED SHED SHED SHED SHED SHED SHED SHED						TEST & EVALUATION
10.30 Coffee Break Plenary Session - AHS Best Paper POUMI Industria 4.0 - Prof. Marco Taisch Networking Lunch Networking Lunch AERODYNAMICS FUGHT MECHANICS Predicting Aerodynamic Performance of a Hovering Rotor Near Stall Sheng Chunhua Muscarello Vincenzo AERODYNAMICS FUGHT MECHANICS DYNAMICS Sheng Chunhua Muscarello Vincenzo ALTI/LQE Scheme for Real Time Rotor Component Load Estimation Models Sheng Chunhua Muscarello Vincenzo Prasad IVR Soliazzo Adolfo Timmermar AERODYNAMICS FUGHT MECHANICS DYNAMICS AERODYNAMICS AERODYNAMICS FUGHT MECHANICS Development of augmented control laws for a titrotor in low and high speed fight modes Prasad IVR Soliazzo Adolfo Timmermar AERODYNAMICS AERODYNAMICS AERODYNAMICS AERODYNAMICS AERODYNAMICS FUGHT MECHANICS DYNAMICS AERODYNAMICS FUGHT MECHANICS DYNAMICS AERODYNAMICS AERODYNAMICS FUGHT MECHANICS DYNAMICS FUGHT MECHANICS DYNAMICS AERODYNAMICS FUGHT MECHANICS DYNAMICS FUGHT MECHANICS DYNAMICS FUGHT MECHANICS DYNAMICS FUGHT MECHANICS DYNAMICS FUGHT MECHANICS FUGHT MECHANICS DYNAMICS FUGHT MECHANICS FUGHT MEC	10.00	Large Eddy Simulation of Advancing Rotor for Near to Far Wake	Stabilization of External Loads on a Rotorcraft in High Speed Flight Using	Helicopter Wake Encounters in the	Advances in Helicopter Electric Tail	658 Ship/helicopter Qualification Testing for a non-naval helicopter
11.00 Plenary Session - AHS Best Paper 11.30 POLIMI Industria 4.0 - Prof. Marco Taisch Networking Lunch AERODYNAMICS FLIGHT MECHANICS DYNAMICS AIRCRAFT SYSTEMS 539 13.30 Predicting Aerodynamic Performance of a Hovering Notor Near Stall Models Models Sheng Chunhua AERODYNAMICS FLIGHT MECHANICS DYNAMICS AIRCRAFT SYSTEMS 559 ALTI/LQE Scheme for Real Time Rotor Component Load Estimation TILT-ROTORCRAFT INTL-ROTORCRAFT INTL-ROTORCRAFT INTL-ROTORCRAFT SYSTEMS 559 ALTI/LQE Scheme for Real Time Rotor Component Load Estimation Models Instruments for Figlic Helicopter Noise Mind Models Models Development of Load Estimation Stall Figure 1 (1997) AIRCRAFT SYSTEMS 558 EXPERIMENTAL EVALUATION OF AN ACTURE CONTROLLED L-SHAPED TAB FOR DYNAMICS TAIL ALLEVIATION FOR Development of augmented control laws for a tiltrotor in low and high speed flight modes 558 bladed Rotor usin Sensors 1 (1997) AIRCRAFT SYSTEMS 558 bladed Rotor usin Sensors 1 (1997) AIRCRAFT SYSTEMS 558 bladed Rotor usin Sensors 1 (1997) AIRCRAFT SYSTEMS 1 (1997)		Caprace Denis-Gabriel	Singh Ajay	Barakos George	Brunetti Massimo	Ciotola Antonio
13.30 POLIMI Industria 4.0 - Prof. Marco Taisch Networking Lunch 13.30 AERODYNAMICS FLIGHT MECHANICS DYNAMICS AIRCRAFT SYSTEMS 558 13.30 Predicting Aerodynamic Performance of a Hovering Rotor Near Stall Models Predicting Aerodynamic Performance of a Hovering Rotor Near Stall Models Sheng Chunhus Muscarello Vincenzo Prasad JVR Sollazzo Adolfo Till-ROTORCRAFT INTROTORCRAFT INTROTORCRAFT SYSTEMS SSB 58 SEPERIMENTAL EVALUATION OF AM ACTUE CONTROLLED L-SHAPED TAB FOR DYNAMICS STALL ALLEVIATION FOR DYNAMICS STALL ALLEVIATION Zanotti Alex Viganò Luca Serafini Jacopo Bendisch Stefan Kuefmann i For Brught Time Helicopter Picts Rotor in Various States of Helicopter FCS Design Rotor In Various States of Helicopter PCS Design Rotor In Various States of Helicop	10.30			Coffee Break		
13.30 POLIMI Industria 4.0 - Prof. Marco Taisch Networking Lunch 13.30 AERODYNAMICS FLIGHT MECHANICS DYNAMICS AIRCRAFT SYSTEMS 558 13.30 Predicting Aerodynamic Performance of a Hovering Rotor Near Stall Models Predicting Aerodynamic Performance of a Hovering Rotor Near Stall Models Sheng Chunhus Muscarello Vincenzo Prasad JVR Sollazzo Adolfo Till-ROTORCRAFT INTROTORCRAFT INTROTORCRAFT SYSTEMS SSB 58 SEPERIMENTAL EVALUATION OF AM ACTUE CONTROLLED L-SHAPED TAB FOR DYNAMICS STALL ALLEVIATION FOR DYNAMICS STALL ALLEVIATION Zanotti Alex Viganò Luca Serafini Jacopo Bendisch Stefan Kuefmann i For Brught Time Helicopter Picts Rotor in Various States of Helicopter FCS Design Rotor In Various States of Helicopter PCS Design Rotor In Various States of Helicop						
12.30 AERODYNAMICS FLIGHT MECHANICS DYNAMICS AIRCRAFT SYSTEMS TEST & EVALUATION OF A Hovering Notor Near Stall Sheng Chunhua Muscarello Vincenzo Prasad JVR Sollazzo Adolfo Timmermar ACROUYNAMICS TILT-ROTORCRAFT 14.00 ACTIVE CONTROLLED L-SHAPED TAB Speed flight modes Population of a Notor a bitrotor in low and high speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB Speed flight modes Seafini Jacopo Bendisch Stefan Parameter Varying Helicopter Notice Monitoring Through Strain ACROUYNAMICS FLIGHT MECHANICS Population Pop						
ARRODYNAMICS 602 FLIGHT MECHANICS 673 713 595 Live Optical projection of Timerman Gof a Hovering Rotor Near Stall Models Sheng Chunhua Muscarello Vincenzo Prasad JVR Sheng Chunhua Muscarello Vincenzo Prasad JVR Sollazzo Adolfo TILT-ROTORCRAFT AUTOPILOT DESIGN FOR THE ERICA ITILT-ROTORCRAFT Instruments for Flight Helicopter Noise Middle ARRODYNAMICS SSB 664 725 667 AUTOPILOT DESIGN FOR THE ERICA ITILT-ROTORCRAFT AUTOPILOT DESIGN FOR THE ERICA INTURE COMMODILE STALL STANDAM	11.30		F	POLIMI Industria 4.0 - Prof. Marco Taisc	h	
13.30 Predicting Aerodynamic Performance of a Hovering Rotor Near Stall Sheng Chunhua Muscarello Vincenzo Sheng Chunhua Muscarello Vincenzo Prasad JVR Sollazzo Adolfo TillT-ROTORCRAFT Helicopter Vibration Health Monitoring Systems Featuring Engine Sale bladed Rotor using Sale Sale Bladed Rotor using Sale Sale Bladed Rotor using Sale Sale ROTOLSON Till Sale Bladed Rotor using Sale S	12.30					
13.30 Predicting Aerodynamic Performance of a Hovering Rotor Near Stall Sheng Chunhua Muscarello Vincenzo Prasad JVR Sollazzo Adolfo Titt-ROTORCRAFT Models Muscarello Vincenzo Prasad JVR Sollazzo Adolfo Timmermar AERODYNAMICS FUGATIVE CONTROLLED L-SHAPED TAB Sepecifying the modes Swashplate Sollazzo Adolfo Timmermar Health Monitoring Through Strain Sensors EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB speed flight modes EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB SPEED						TEST & EVALUATION
AERODYNAMICS FLIGHT MECHANICS FLIGHT MECHANICS FLIGHT MECHANICS FLIGHT MECHANICS FOR DYNAMIC STALL ALLEVIATION ACTIVE CONTROLLED L-SHAPED TAB FOR DYNAMIC STALL ALLEVIATION Zanotti Alev Vigand Luca FLIGHT MECHANICS FOR DYNAMICS STALL ALLEVIATION Vigand Luca AERODYNAMICS FLIGHT MECHANICS FLIGHT MECHANICS FOR DYNAMICS STALL ALLEVIATION ARRODYNAMICS STALL ALLEVIATION ARRODYNAMICS STALL ALLEVIATION ARRODYNAMICS STALL ALLEVIATION FOR DYNAMICS STALL ALLEVIATION ARRODYNAMICS STALL ALLEVIATION ARRODYNAMICS STALL ALLEVIATION FOR DYNAMICS STALL ALLEVIATION ARRODYNAMICS STALL ALLEVIATION	13.30	of a Hovering Rotor Near Stall	using Linear Parameter Varying Models	Rotor Component Load Estimation	TILT-ROTORCRAFT	Live Optical Digitization of Flight Instruments for Flight Guidance in Helicopter Noise Measurements
14.00 ACTIVE CONTROLLED L-SHAPED TAB ACTIVE CONTROLLED L-SHAPED TAB FOR DYNAMIC STALL ALLEVIATION Zanotti Alex Viganò Luca Viganò Luca Serafini Jacopo Jerefinence of an Active Control Editor in Individual Blade (Bot or a Utrotor in Individual Blade (Bot or altitrotor individual Blade (Bot or altitrotor in Individual Blade (Timmerman Bart
EXPERIMENTAL EVALUATION OF AN ACTIVE CONTROLLED L-SHAPED TAB FOR DYNAMICS STALL ALLEVIATION Zanotti Alex Vigand Luca Serafini Jacopo Serafini Jacopo Bendisch Stefan Working Towards A-Priori Identification of Undestrable Plots Borer FCS Design Rotor in Various States of Helicopter FCS Design Rotor Rotor in Various States of Helicopter Demonstrator with Lests results Helicopter Christian Gibertini Giu EXPERIMENTAL ASS EXPERIMENTAL ASS EXPERIMENTAL ASS EXPERIMENTAL SE EXPERIMENTAL SE FCGMT ROTOR RINTING FC TORROCHART ROTOR RINTING FC TORROCHART REQURSTRENTS AND COSTONARY RECORD TORROCHART REQUESTRENTS AND COSTONA						TEST & EVALUATION
ACTIVE CONTROLLED L-SHAPED TAB FOR DYNAMIC STALL ALLEVIATION Zanotti Alex Viganò Luca ARRODYNAMICS FUGHT MECHANICS Usganò Luca PEGEN PEGEN Viganò Luca Serafini Jacopo Bendisch Stefan Kuefmann Kuefmann Test & EVALL 696 Moving Towards A-Priori Identification of Undesirable Pilot Biometric for Collective Bounce Instability Stalewski Wienczyslaw Cortigiani Nicola ARRODYNAMICS Serafini Jacopo Bendisch Stefan Kuefmann Kuefmann Test & EVALL HIGHER TURBOSHAFT ENGINE THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS ARRODYNAMICS FUGHT MECHANICS DYNAMICS ARRODYNAMICS FUGHT MECHANICS DYNAMICS THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS FACILI THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS ARRODYNAMICS FUGHT MECHANICS DYNAMICS ENGINES & PROPULSION TEST & EVALL THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS ARRODYNAMICS FUGHT MECHANICS DYNAMICS ENGINES & PROPULSION TEST & EVALL THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS ARRODYNAMICS FUGHT MECHANICS DYNAMICS ENGINES & PROPULSION TEST & EVALL THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS ARRODYNAMICS FUGHT MECHANICS DYNAMICS ENGINES & PROPULSION TEST & EVALL THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS ARRODYNAMICS FUGHT MECHANICS DYNAMICS ENGINES & PROPULSION TEST & EVALL THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS ARRODYNAMICS ENGINES & PROPULSION TEST & EVALL THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS ARRODYNAMICS FUGHT MECHANICS THE SPECIFIC TIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS ARRODYNAMICS ENGINES & PROPULSION TEST & EVALL THE SPECIFIC TIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS AIRFRAMER REQUIREMENT		538	664	725	637	657
AERODYNAMICS FLIGHT MECHANICS DYNAMICS ENGINES & PROPULSION TEST & EVAIL 16.536 692 696 606 607 6652 696 607 6652 696 607 6652 696 607 6652 696 607 6652 696 607 6962 6962 6962 6969 607 6962 6969 607 6962 6969 6969 6969 6969 6969 6969 696	-14,00	ACTIVE CONTROLLED L-SHAPED TAB	laws for a tiltrotor in low and high	Health Monitoring Through Strain	Monitoring Systems Featuring Engine	Individual Blade Control of a 5†bladed Rotor using the Multiple Swashplate System
ARRODYNAMICS FLIGHT MECHANICS DYNAMICS ENGINES & PROPULSION TEST & EVAIL 16.536 692 696 606 607 692 696 692 696 696 607 692 696 696 696 696 696 696 696 696 696		Zanotti Alev	Viganò Luca	Serafini Jacono	Rendisch Stefan	Kuefmann Philip
14.30 Influence of an Active Gurrey Flap upon the Aerodynamic and Performance Properties of a Main Rotor in Various States of Helicopter FCS Design for the Ukry National For Helicopter FCS Design Stalewski Wiencryslaw Cortigiani Nicola Zanoni Andrea Pinch Measurement and Validation of Performance and Loads of a Mach-Scaled Rotor at High Advance Ratios Trollinger Lauren Chen Renliang Park Jae-Sang Mercier Christian Gibertini Giu Gibertini Giu Control design of a tilt for the UK National HELICOPTER TURBOSHAFT ENGINE Control design of a tilt for the UK National THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS Facility for the UK National Facility Facility Fa	\vdash		FLIGHT MECHANICS	DYNAMICS		TEST & EVALUATION
AERODYNAMICS FLIGHT MECHANICS DYNAMICS ENGINES & PROPULSION TEST & EVAIL 700 615 572 663 15.00 Refined Measurement and Validation of Performance and Loads of a Mach-Scaled Rotor at High Advance Ratios 16 Ferformance and Loads of a Mach-Scaled Rotor at High Advance Ratios Trollinger Lauren Chen Renliang Park Jae-Sang Mercier Christian Gibertini Giu	14.30	536 Influence of an Active Gurney Flap upon the Aerodynamic and Performance Properties of a Main Rotor in Various States of Helicopter Flight	692 Atmospheric Turbulence Estimation for Helicopter FCS Design	696 Moving Towards A-Priori Identification of Undesirable Pilot Biometrics for Collective Bounce Instability	601 HELICOPTER TURBOSHAFT ENGINE: THE SPECIFICITIES TO MEET AIRFRAMER REQUIREMENTS AND CUSTOMER NEEDS	652 Control design of a tilting mechanism for the UK National Rotor Test Rig Facility
700 647 615 572 663 15.00 Refined Measurement and Validation of Performance and Loads of a Mach-Scaled Rotor at High Advance Ratios Trollinger Lauren Chen Renliang Park Jae-Sang Mercier Christian Giberhin Giu	\vdash					
		700 Refined Measurement and Validation of Performance and Loads of a Mach-	647 Distributed Turbulence Model with Accurate Spatial Correlations for	615 Performance and Vibration Analyses of Lift-offset Helicopters using a	572 Light Helicopter Demonstrator with High Compression Engine (HCE): flight	663 EXPERIMENTAL ASSESSMENT OF
		Trollinger Lauren	Chen Renliang	Park Jae-Sang	Mercier Christian	Gibertini Giuseppe
15.30 Coffee Break	15.30			Coffee Break		

	AERODYNAMICS	FLIGHT MECHANICS	ACOUSTICS	ENGINES & PROPULSION	HISTORY OF ROTORCRAFT		
16.00	592 HELICOPTER FUSELAGE MODEL DRAG REDUCTION BY ACTIVE FLOW CONTROL SYSTEMS	531 Adaptive Control based Flying Quality Design for Helicopters	Analysis of the flow produced by a low-Reynolds rotor optimized for low noise applications. Part II: Acoustics	554 ANALYSIS METHOD FOR OPTIMAL DESIGN OF HELICOPTER MAIN GEARBOX WITH COMBINATION OF STRUCTURAL AND THERMAL INFLUENCE	694 Enrico Forlaniniမs contribution to fixed and rotary wing aircraft development		
	De Gregorio Fabrizio	Wu Wei	Serre Ronan	Park Youn /	Cardani Cesare		
	AERODYNAMICS	FLIGHT MECHANICS	ACOUSTICS	ENGINES & PROPULSION	HISTORY OF ROTORCRAFT		
16.30	573 Validation of CFD Codes for the Helicopter Wake in Ground Effect	733 A Model-Based Design Framework for Rotorcraft Trim Control Laws	Assessment of a Comprehensive Aero Acousto-Elastic Solver for Rotors in BVI Conditions	696 Analysis of a Helicopter Main Gearbox by means of Numerical Modelling approach.pdf	The engineer Leonardo and the Leonardo engineer: designing rotorcrafts under his name five centuries later		
	Sugiura Masahiko	Trainelli Lorenzo	Serafini Jacopo	Manes Andrea	bianco-mengotti riccardo		
	AERODYNAMICS 635	FLIGHT MECHANICS	ACOUSTICS	ENGINES & PROPULSION	HISTORY OF ROTORCRAFT 727		
17.00	Investigation of the blade tip vortex on a rotating and pitching blade	515 About the Impact of Wind Energy Wake Vortices on Helicopter Trim and Rotor Blade Motion	APPLICATION OF LATTICE- BOLTZMANN METHOD FOR ROTORCRAFT AERODYNAMICS AND AEROACOUSTICS PREDICTION	COMPOUND-SPLIT DRIVETRAINS FOR ROTORCRAFT	EARLY DEVELOPMENT OF TILTROTOR CONVERTIBLE AIRCRAFT IN THE UNITED KINGDOM		
	Goerttler Andreas	van der Wall Berend G.	Romani Gianluca	Paschinger Pierre	D'Andrea Andrea		
	AERODYNAMICS 605	FLIGHT MECHANICS 604	ACOUSTICS 618	ENGINES & PROPULSION 717	HISTORY OF ROTORCRAFT 543		
17.30	Trailed Circulation of Hovering Rotors with Leading-Edge Protuberances Cully Brian	Control Allocation Optimization Methods for a Coaxial Compound Helicopter	A New Grid Based Method for General Long-Range Rotorcraft Acoustics	Conceptual and Preliminary Design of a Hybrid Dust Filter for Helicopter Engines	Unbuilt prototypes from Agusta early years (1956-1970)		
20.00	Cony Bildii			.,	rice woletti Edigi		
	Gala Dinner - Museo Della Scienza e della Tecnica						

	Day 3 - Thursday 13th September								
	AIRWORTHINESS	FLIGHT MECHANICS	DYNAMICS	STRUCTURES & MATERIALS	CREW STATION & HUMAN FACTORS				
9.00	668	576	709	575	680				
	Harmonization across the Atlantic of guidance material related to digital systems aspect of certification	First Attempts to Account for Flexible Modes in ACT/FHS System Identification	Effect of Three Dimensional Dynamic Stall on Rotorcraft Stability	HEALTH STRUCTURE MONITORING FOR AIRCRAFT AND ROTORCRAFT THROUGH INVERSE FINITE ELEMENT METHOD (IFEM)	Integrating Data and Sensor Based Obstacle Information in a Conformal Landing Display for Helicopter				
	Fabre Louis	Seher-Weiss Susanne	Ramanujam Vellingiri	Papa Umberto	Lueken Thomas				
	AIRWORTHINESS	FLIGHT MECHANICS	DYNAMICS	STRUCTURES & MATERIALS	CREW STATION & HUMAN FACTORS				
	749	706	726	710	617				
9.30	From operational considerations to airworthiness requirements: an offshore approach example	EVALUATION OF OPTIMAL MODEL FOLLOWING CONTROLLERS IN TERMS OF HANDLING QUALITIES	Mars Helicopter: Flight Dynamics, Guidance, and Control	Interlaminar damage detection in composite elements by means of optical fibre sensors	Physiological and Psychological Response Modelling of the Helicopter Pilot through Vibration Simulation				
	Smerals Alexandros	Okcu Ilgaz	Grip Havard	Bettini Paolo	Khaksar Zeinab				
	AIRWORTHINESS	FLIGHT MECHANICS	DYNAMICS	STRUCTURES & MATERIALS	CREW STATION & HUMAN FACTORS				
	528	689	522	633	559				
10.00	IMPLEMENTATION OF THE HEALTH MONITORING DATA FOR ROTORCRAFT FATIGUE SPECTRUM	iMission - Leonardo Helicopters integrated performance simulation: consolidating decades of lessons learnt and keeping the door open to the lessons to be learnt	Whirl and Stall Flutter Simulation Using CFD	MULTIFIELD VARIATIONAL SECTIONAL ANALYSIS FOR COMPOSITE BLADES BASED ON GENERALIZED TIMOSHENKO-VLASOV THEORY	Workload Reduction Through Steering Wheel Control for Rotorcraft				
	Rustici Sara	Bianco Mengotti Riccardo	Barakos George	Jung Sung	Schuchardt Bianca I.				
10.30			Coffee Break						
11.00			Keynote Address - EASA						
11.30			Keynote Address - UAV						
12.30			Networking Lunch						

Section Sect						
13.30 PGRCES ON OBSTACLES IN ROTOR WAKE - A CAPTEUR ACTION GROUP Modeling Pilot Pulse Control WAKE - A CAPTEUR ACTION GROUP Working and Antonio Bachelder Edward Bachelder Edward Bachelder Edward Bachelder Edward Bachelder Edward ARRODYNAMICS ARRODYNAMICS ARRODYNAMICS ARRODYNAMICS Signation of Melicopter Acrodynamics in the Vicinity of an Obstacle surge a Free Vake Panel Method Advanced pilot assistance to perform Computational Aeroacoustic Analysis of Propeller Installation Effects ACOUSTICS STRUCTURES & MATERIALS STRUCTUR		AERODYNAMICS	FLIGHT MECHANICS	ACOUSTICS	STRUCTURES & MATERIALS	TEST & EVALUATION
WAKE - A GARTEUR ACTION GROUP Visingard Antonio ABRODYNAMICS SENSORS AMONICS & SENSORS AMONICS & SENSORS ACOUSTICS STRUCTURES & MATERIALS TEST & EVALUATION Amozgar Mohammadreza Treacy Shawn Treacy Shawn Amozgar Mohammadreza Treacy Shawn Amozgar Mohammadreza Treacy Shawn Treacy Shawn Amozgar Mohammadreza Treacy Shawn Treacy Shawn Treacy Shawn Amozgar Mohammadreza Treacy Shawn Treacy Shawn Amozgar Mohammadreza Treacy Shawn Treacy Shawn Treacy Shawn Amozgar Mohammadreza Treacy Shawn Treacy Shawn Amozgar Mohammadreza Treacy Shawn Treacy Shawn A stress based critical-plane apace for study of rolling critical and support on the fore plant of the plant of t			716	Numerical Simulation of Rotor	Basic aeroelastic stability studies of	
ARRODYNAMICS AVIONICS & SENSORS ACQUISITION STRUCTURES & MATERIALS 14.00 Simulation of Helicopter Acodynamics in the Vicinity of an Obstacle using a Free Wake Panel Method Method Schmid Matthias Canale Nicolas ALOUSTICS ACOUSTICS A	13.30		Modeling Pilot Pulse Control	High-Accuracy Schemes on	geometrically exact beam and finite-	
AREROPYNAMICS AVOINCS & SERSORS Simulation of Helicopter Aerodynamics in the Vicinity of an Obstacle using a Free Wake Panel Method Schmid Matthias Canale Nicolas ACOUSTICS ACOUSTICS ACOUSTICS TRUCTURES & MATERIALS For paper ache for study of rolling contact for propeller installation Effects and interaction in the Vicinity of an Obstacle using a Free Wake Panel Method Schmid Matthias Canale Nicolas Canale Nicolas AEROPYNAMICS AVOINCS & SERSORS ACOUSTICS TRUCTURES & MATERIALS ASTRUCTURES & MATERIALS For studying rotorcard fusions of Propeller Installation Effects fatigue crack propagation in planet and instance to perform oil rig approaches of Propeller Installation Effects ACOUSTICS TRUCTURES & MATERIALS TEST & EVALUATION Measurement of Blade Deflections of fatigue crack propagation in planet and instance to perform oil right properties of a normal planet and instance to a constitution of Propeller Installation Effects ACOUSTICS TRUCTURES & MATERIALS TEST & EVALUATION Measurement of Blade Deflections of Statistics Acoustics and Instance of Propeller Installation Effects Treatment of Propeller Installa	/	Visingardi Antonio	Bachelder Edward	Bobkov Vladimir	Amoozgar Mohammadreza	Treacy Shawn
Simulation of Helicopter an Obstacle using a Free Wake Panel Method Advanced pilot assistance to perform oil rig approaches Canale Nicolas			AVIONICS & SENSORS	ACOUSTICS		
Aerodynamics in the Vicinity of an Obstacle using a Free Wake Panel Method Schmid Matthias Canale Nicolas Barakos George AcroDYNAMICS AVIONICS & SENSORS ACOUSTICS Fiziotis Vasilis Bardi Massimo Arendorynamics Allowing As sensors Acoustical methods and experiments for studying rotorcraft fuselage in the functional approach capability			526	521	/	585
ARRODYNAMICS AVIONICS a SENSORS 623 623 623 626 ACOUSTICS 730 620 ACOUSTICS 730 620 ACOUSTICS 620 First results of LIDAR aided helicopter approaches during NATO DVE-Mitigation trials Mitigation trials ARRODYNAMICS ACOUSTICS ACOUSTICS ACOUSTICS First results of LIDAR aided helicopter approaches during NATO DVE-Mitigation trials ARRODYNAMICS ACOUSTICS ACOU	14.00	Aerodynamics in the Vicinity of an Obstacle using a Free Wake Panel			approach for study of rolling contact fatigue crack propagation in planet	an unmanned intermeshing
14.20 Rotorcraft flight in interaction with obstacles Rizotis Vasilis Bard Massimo Rizotis Vasilis Bard Massimo ACOUSTICS S80 580 15.00 Helicopter-Obstacle Aerodynamic Interaction in Windy Conditions Zagaglia Daniele Zimmermann Michael Zaccuri Rocco Cristian AERODYNAMICS ARRODYNAMICS AVIONICS & SENSORS ACOUSTICS STRUCTURES & MATERIALS TEST & EVALUATION TORQUE BEAM ARRODYNAMICS		Schmid Matthias	Canale Nicolas	Barakos George	Pierre Depouhon	Andreas Voigt
Rotorcraft flight in interaction with obstacles Riziotis Vasilis Riziotis Vasilis Rard Massimo SSO Relicopter -Obstacle Acrodynamic Interaction in Windy Conditions Zagaglia Daniele Zimmernan Michael Zimmernan Micha						
Rotorcraft flight in interaction with obstacles Rizotor Vasilis Rizotor		623		730	\	
ARRODYNAMICS AVIONICS & SENSORS 666 580 5718 5718 5718 5719 Helicopter-Obstacle Aerodynamic Interaction in Windy Conditions Zagaglia Daniele Zimmermann Michael Vigeuano Luigi Bottasso Luigi Filippone Antonio Coffee Break ARRODYNAMICS AVIONICS & SENSORS ACOUSTICS STRUCTURES & MATERIALS TEST & EVALUATION 719 THE COPTER ANTI- TORQUE BEAM Filippone Antonio Coffee Break ARRODYNAMICS AVIONICS & SENSORS ACOUSTICS STRUCTURES & MATERIALS MANUFACTURING 681 721 Experimental and numerical interactions between a stationary helicopter adsurrounding obstacles for a description of the aerodynamic interactions between a stationary helicopter adsurrounding obstacles for a description of the Aerodynamic interactions between a stationary helicopter advanced by a finite produced by a load for rigid coaxial rotor in forward flight with vortex particle method ELECTRONIC COUPLED ACTIVE SIGNSTINCS IN DUAL PILOT FIEST FOR INSTRUCTIONAL FLIGHTS AERODYNAMICS AVIONICS & SENSORS ACOUSTICS STRUCTURES & MATERIALS MANUFACTURING 689 721 Examination of the Influence of Empiric Parameters on the Aerodoustic Results of the Free Wake Code FIRST 670 INSTRUCTIONAL FLIGHTS FOR INSTRUCTIONAL FLIGH	14.30		instant-on tactical and precision	for studying rotorcraft fuselage	Tolerance Evaluation of Rotorcraft	validation of structural properties of a new design for active twist rotor
ARRODYNAMICS AVIONICS & SENSORS 666 580 5718 5718 5718 5719 Helicopter-Obstacle Aerodynamic Interaction in Windy Conditions Zagaglia Daniele Zimmermann Michael Vigeuano Luigi Bottasso Luigi Filippone Antonio Coffee Break ARRODYNAMICS AVIONICS & SENSORS ACOUSTICS STRUCTURES & MATERIALS TEST & EVALUATION 719 THE COPTER ANTI- TORQUE BEAM Filippone Antonio Coffee Break ARRODYNAMICS AVIONICS & SENSORS ACOUSTICS STRUCTURES & MATERIALS MANUFACTURING 681 721 Experimental and numerical interactions between a stationary helicopter adsurrounding obstacles for a description of the aerodynamic interactions between a stationary helicopter adsurrounding obstacles for a description of the Aerodynamic interactions between a stationary helicopter advanced by a finite produced by a load for rigid coaxial rotor in forward flight with vortex particle method ELECTRONIC COUPLED ACTIVE SIGNSTINCS IN DUAL PILOT FIEST FOR INSTRUCTIONAL FLIGHTS AERODYNAMICS AVIONICS & SENSORS ACOUSTICS STRUCTURES & MATERIALS MANUFACTURING 689 721 Examination of the Influence of Empiric Parameters on the Aerodoustic Results of the Free Wake Code FIRST 670 INSTRUCTIONAL FLIGHTS FOR INSTRUCTIONAL FLIGH		Pizintis Vasilis	Rardi Massimo	Yin lianning	Payayaranu Vijayakumar	Kalow Stoffen
15.00 Helicopter-Obstacle Aerodynamic Interaction in Windy Conditions Zagaglia Daniele Zimmermann Michael Zimmermann Michae	-					
Helicopter-Obstacle Aerodynamic Interaction in Windy Conditions Zagaglia Daniele Zimmermann Michael Zagaglia Daniele Zimmermann Michael Zimme		580	656	660	517	718
15.30 Coffee Break ACOUSTICS STRUCTURE'S & MATERIALS ACOUSTICS Experimental and numerical investigation of the aerodynamic interactions between a stationary helicopter Autopilot Fly-Away Mode After Loss of Engine After Loss of Engine Acrophyside After Loss of Engine Code FIRST Kranzinger Patrick Smith Drew ACOUSTICS Examination of the Influence of Empiric Parameters on the Aero-acoustic Results of the Free Wake Code FIRST Kranzinger Patrick Smith Drew Imperiale Vita ACOUSTICS STRUCTURE'S & MATERIALS AUTOMATED INSERTION OF Z-PINS INTO THICK COMPOSITE LAMINATES NOTO THICK COMPOSITE LAMINATES Smith Drew Imperiale Vita ACOUSTICS STRUCTURE'S & MATERIALS AUTOMATED INSERTION OF Z-PINS INTO THICK COMPOSITE LAMINATES Smith Drew Imperiale Vita ANALYSE OF SERVINGER FOR ANALYSE OF THE FLOW INSTRUCTIONAL HIGH Flow rold carbonic on lose applications. Part I: one applications.	15.00		approaches during NATO DVE-	noise propagation from high speed	MECHANISM FOR VIBRATION REDUCTION ON A HELICOPTER ANTI	Instrumented Rotor Blades for a
AERODYNAMICS AVIONICS & SENSORS 719 Experimental and numerical investigation of the aerodynamic interactions between a stationary helicopter Autopilot Fly-Away Mode After Loss of Engine Gallas Quentin ARRODYNAMICS AVIONICS & SENSORS 719 Experimental and numerical investigation of the aerodynamic interactions between a stationary helicopter and surrounding obstacles Gallas Quentin ARRODYNAMICS AVIONICS & SENSORS 681 721 Examination of the Influence of Empire Parameters on the Aero-acoustic Results of the Free Wake Code FIRST Code FIRST Simulation of Unstandly Aurodynamic load for rigid coaxial rotor in forward flight with vortex particle method ELECTRONIC COUPLED ACTIVE SUBSTINCS IN DUAL PILOT In Allaysis of the flow produced by a low-Reynolds rotor optimized for low noise applications. Part I: NAMUFACTURING AND TESTING MANUFACTURING AND TESTING MANUFACTURIN		Zagaglia Daniele	Zimmermann Michael	Vigevano Luigi	Bottasso Luigi	Filippone Antonio
Experimental and numerical investigation of the aerodynamic interactions between a stationary helicopter and surrounding obstacles Gallas Quentin AZCURI ROCCO Cristian AZCURI ROCCO	15.30			Coffee Break		
Experimental and numerical investigation of the aerodynamic interactions between a stationary helicopter autopilot Fly-Away Mode After Loss of Engine Activations between a stationary helicopter and surrounding obstacles Gallas Quentin Zaccuri Rocco Cristian Engine AUTOMATED INSERTION OF Z-PINS INTO THICK COMPOSITE LAMINATES. Gallas Quentin Zaccuri Rocco Cristian Kranzinger Patrick Simulation of unsteady aerodynamic load for rigid coaxial rotor in forward flight with vortex particle method ELECTRONIC COUPLED ACTIVE SIGNSTRUCTIONAL FLIGHTS AROUNTS STRUCTURES AND INSTRUCTIONAL FLIGHTS FOR INSTRUCTIONAL FLIGHTS FOR INSTRUCTIONAL FLIGHTS Examination of the Influence of Empire Ramaneters on the Aero-acoustic Results of the Free Walke Code FIRST. Structural Test Rig Design Optimization Optimized for Smith Drew Imperiale Vita MANUFACTURING STRUCTURES MATERIALS STRUCTURES AMATERIALS Soluzion Schermant Su Velviolis con Soluzion Schermant Su Velviolis con Union separations. Part 1: no inches applications. Part 1: no inches applications. Part 1: no inches partications. Part 2: no inches partications. Part 1: no inches partications. Part 1: no inches partications. Part 2: no inches partications. Part 2: no inches partications. Part 2: no inches partications. Part		AERODYNAMICS	AVIONICS & SENSORS	ACOUSTICS	STRUCTURES & MATERIALS	MANUFACTURING
Investigation of the aerodynamic interactions between a stationary helicopter Autoplic Fly-Away Mode After Loss of Engine Deptinisation Structural Test Rig Design Deptinisation INTO THICK COMPOSITE LAMINATES Sometime Town International In		557	719	661	698	721
ARRODYNAMICS AVIONICS & SENSORS ACOUSTICS STRUCTURES & MATERIALS MANUFACTURING 568 612 648 648 648 649 649 649 649 649 649 640 640 640 640 640 640 640 640 640 640	16.00	investigation of the aerodynamic interactions between a stationary		Empiric Parameters on the Aero- acoustic Results of the Free Wake		
568 612 566 641 648 16.30 Simulation of unsteady aerodynamic load for rigid coaxial rotor in forward flight with vortex particle method FLECOPTER'S POR NSTRUCTIONAL FLIGHTS POR NSTRUCTIONAL PLOT in one applications. Part 1: No Revolvnamics of the flow produced by a low-levenoids rotor optimized for low conductivity Accorptiate on Carbonio, Kevlar ed Altri in Alternativa Alla Copper Mesh		Gallas Quentin	Zaccuri Rocco Cristian	Kranzinger Patrick	Smith Drew	Imperiale Vita
16.30 Simulation of unsteady aerodynamic load for rigid coaxial rotor in forward flight with vortex particle method ELECTRONIC COUPLED ACTIVE SIDESTICKS IN DUAL PILOT HELICOPTERS FOR INSTRUCTIONAL FLIGHTS Analysis of the flow produced by a low-Reynolds rotor optimized for low noise applications. Part I: Aerodynamics Acodynamics Soluzioni Schermanti Su Velivoli con Utilizzo di Tessili Elettricamente Conduttivi Accoppiati con Carbonio, Kevlar ed Altri ni Alternativa Alla Copper Mesh						
16.30 Simulation of unsteady aerodynamic Simulation of unsteady aerodynamics Simulation of unsteady aerodynamics Simulation of unsteady aerodynamics Utilizzo di Tessili Elettricamente Utilizzo di Tessili Elettricamente Onduttivi Accoppiati con Carbonio, MANUFACTURING AND TESTING Analysis of the flow produced by a Utilizzo di Tessili Elettricamente Conduttivi Accoppiati con Carbonio, Nevlar ed Altri in Alternativa Alla Copper Mesh		568	612	566	641	648
Jianfeng Tan dos Santos Sampaio Rodolfo Gourdain Nicolas Soliani Ivano Mainz Henning	16.30	load for rigid coaxial rotor in forward	SIDESTICKS IN DUAL PILOT HELICOPTERS FOR INSTRUCTIONAL	low-Reynolds rotor optimized for low noise applications. Part I:	Utilizzo di Tessili Elettricamente Conduttivi Accoppiati con Carbonio , Kevlar ed Altri in Alternativa Alla	
	1	Jianfeng Tan	dos Santos Sampaio Rodolfo	Gourdain Nicolas	Soliani Ivano	Mainz Henning

Organizing Commitee

43rd European Rotorcraft Forum Organizing Committee

Fabio Nannoni - Chair Leonardo Helicopters SVP Engineering fabio.nannoni@leonardocompany.com

Luca Medici
Leonardo Helicopters
Head of Aircraft System Integration
luca.medici@leonardocompany.com

Conference Secretariat

Patrizia Pozzoni
Mario Troiano
Leonardo Helicopters
ERF2017@leonardocompany.com
Tel.:+39 0331 711158
Via G. Agusta, 520
21017 Cascina Costa di Samarate (VA) - Italy

Pierangelo Masarati
Politecnico di Milano
Dept. of Aerospace
Science and Technology
pierangelo.masarati@polimi.it

Giuseppe Quaranta
Politecnico di Milano
Dept. of Aerospace
Science and Technology
giuseppe.quaranta@polimi.it

